Recent Posts
Recent Comments
«   2024/05   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Archives
Today
Total
관리 메뉴

AC::MJ LEE

KAIST POW 2012-14 : Equation with integration 본문

Study/KAIST POW

KAIST POW 2012-14 : Equation with integration

엔돌핀! 2012. 9. 10. 21:42


Equation with integration

 Determine all continuous functions $f:(0, \infty) \to (0, \infty)$ such that $\int_{t}^{t^3} f(x) dx =2 \int_{1}^{t} f(x) dx$ for all $t > 0$.

 
 Proof. It's easy to check that $f(t)=k/t$ satisfies the equation for any constant $k>0$. The purpose is to show that these are all solutions of the equation. Since $f$ is continuous, by Fundamental Theorem of Calculus, we can take derivatives to both sides and get $3f(t^3 )t^2 - f(t) = 2f(t)$. That is, $f(t^3)t^2 = f(t)$. We define a continuous function $g$ by $g(t)=tf(t)$ for $t>0$. Then we get $g(t^3)=g(t)$. Let $a=g(1) > 0$.

  Claim : $g(t)=a$ for all $t\in (0, \infty)$.

  When $t\in (0, \infty )$ is given, we define a sequence $\{t_n\}$ by $t_1 =t$ and $t_{n}={t_{n-1}}^{1/3} = t^{1/{3^n}}$. Then $g(t_n)$ is a constant sequence. $\{t_n\} \to 1$ since $\log t_n = {(\log t )}/ {3^n} \to 0$. Since $g$ is continuous, $g(t)=\lim_{n\to\infty} g(t_n)=g(1)=a$. Therefore, $g(t)=a$ for all $t\in(0,\infty)$.


This shows that if $f$ satisfies given equation, $f(t)=a/t$ for some positive $a=g(1)=f(1)$. Therefore, a continuous $f$ satisfies the given equation if and only if $f(t)=k/t$ for some constant $k>0$.



'Study > KAIST POW' 카테고리의 다른 글

KAIST POW 2012-18 : Diagonal  (0) 2012.10.16
KAIST POW 2012-16 : A finite ring  (0) 2012.09.27
KAIST POW 2012-12 : Big partial sum  (0) 2012.05.05
KAIST POW 2012-11 : Dividing a circle  (0) 2012.04.30
KAIST POW 2012-10 : Platonic solids  (0) 2012.04.24