Recent Posts
Recent Comments
«   2024/05   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Archives
Today
Total
관리 메뉴

AC::MJ LEE

KAIST POW 2012-10 : Platonic solids 본문

Study/KAIST POW

KAIST POW 2012-10 : Platonic solids

엔돌핀! 2012. 4. 24. 17:58

Platonic solids

Determine all platonic solids that can be drawn with the property that all of its vertices are rational points.


Proof. For first three platonic solids, it is easy to find specific examples with rational coordinates.

Tetrahedron : $(0,0,0) (0,1,1) (1,0,1) (1,1,0)$

Cube : $(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)$

Octahedron : $(1,0,0) (-1,0,0) (0,1,0) (0,-1,0) (0,0,1) (0,0,-1)$

Claim. There is no regular pentagon with rational coordinates.

Assume the contrary that there exists a regular pentagon $ABCDE$ with such property. Consider $\theta =\angle ABC$. By second law of cosines, $$cos{\theta} = \frac{(\vec A - \vec B)\cdot (\vec B - \vec C)}{|\vec A - \vec B||\vec B - \vec C|}$$ So $$cos^{2}{\theta} = \frac{[(\vec A - \vec B)\cdot (\vec B - \vec C)]^{2}}{(\vec A - \vec B)\cdot (\vec A - \vec B) \times (\vec B - \vec C)\cdot (\vec B - \vec C)}$$ which is rational number because dot product of two vectors with rational coordinates is rational.

But $cos{\theta} = cos{\frac{2\pi}{5}} = \frac{1}{4} (\sqrt 5 -1)$, so $cos^{2}{\theta} = \frac{1}{8}(3-2\sqrt 5)$ is not rational.

Therefore there is no dodecahedron or icosahedron with rational coordinates since they contain regular pentagons composed of their vertices.

Consequently, tetrahedron, cube, octahedron are only platonic solids can be drawn with rational coordinates.


'Study > KAIST POW' 카테고리의 다른 글

KAIST POW 2012-12 : Big partial sum  (0) 2012.05.05
KAIST POW 2012-11 : Dividing a circle  (0) 2012.04.30
KAIST POW 2012-9 : Rank of a matrix  (0) 2012.04.15
KAIST POW 2012-7 : Product of sines  (0) 2012.04.10
KAIST POW 2012-8 : Non-fixed points  (0) 2012.04.08