Recent Posts
Recent Comments
«   2024/05   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Archives
Today
Total
관리 메뉴

AC::MJ LEE

KAIST POW 2012-8 : Non-fixed points 본문

Study/KAIST POW

KAIST POW 2012-8 : Non-fixed points

엔돌핀! 2012. 4. 8. 01:29

Non-fixed points

 Let X be a finite non-empty set. Suppose that there is a function $f : X\to X$  such that $f^{20120407}(x)=x$ for all $x\in X$. Prove that the number of elements x in X such that $f(x)\neq x$ is divisible by 20120407

 
 Proof. Since $f^{20120407}(X)=X$, $f(X)=X$. That is, $f$ is surjective. Then $f$ is bijective because X is finite. Define $Y=\{x\in X | f(x)\neq x \}$. Let the number of elements of $Y$ is $n$. Since 20120407 is prime, let's denote 20120407 by $p$

  If $Y$ is empty, $n=0$ so it's divisible. If not, suppose $y_{1}, y_{2}\in Y$. Define a relation $\sim$ by $y_1 \sim y_2$ iff $\exists k\in N$ such that $y_{1} = f^{k}(y_{2})$. Then we can choose such $k<p$ since $f^p$ is identity. This relation becomse an equivalence relation.
  - $a\sim a$ by $k=0$
  - $a\sim b$ implies $b\sim a$ because $a= f^{k}(b)$ implies $f^{p-k}(a)=f^{p}(b)=b$
  - $a\sim b$ and $b\sim c$ implies $a\sim c$ because $a=f^{k_1}(b), b=f^{k_2}(c)$ implies $a=f^{k_1 + k_2}(c)$

  Claim : each equivalent class has p elements.
  Let $y\in Y$. $\forall k<p, f^{k}(y) \neq y$ because if so, since $(p,x)=1, \exists m_1 , m_2 \in Z$ such that $m_1 p+m_2 k=1$. Then, $f(y)=f^{m_1 p+m_2 k}(y)=y$ since $f$ is bijective. This is contradiction to $y\in Y$. That is, if $k_1 < k_2 <p$, $f^{k_1}(y)\neq f^{k_2}(y)$ since $f^{k_2}(y)=f^{k_2 -k_1} (f^{k_1}(y))$ and $k_2 -k_1 <p$. So all $f^k (y)$ for $k<p$ are distict.  By this fact and because $f^p$ is identity, each equivalent class has p elements in the form of $<y> = \{f^k (y) : 0 \leq k\leq p-1 \}$
 
  If $Y$ is divided to $r$ equivalent classes, then $n=pr$. Therefore, $p$ divides $n$.


'Study > KAIST POW' 카테고리의 다른 글

KAIST POW 2012-12 : Big partial sum  (0) 2012.05.05
KAIST POW 2012-11 : Dividing a circle  (0) 2012.04.30
KAIST POW 2012-10 : Platonic solids  (0) 2012.04.24
KAIST POW 2012-9 : Rank of a matrix  (0) 2012.04.15
KAIST POW 2012-7 : Product of sines  (0) 2012.04.10