Recent Posts
Recent Comments
«   2024/05   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Archives
Today
Total
관리 메뉴

AC::MJ LEE

KAIST POW 2012-7 : Product of sines 본문

Study/KAIST POW

KAIST POW 2012-7 : Product of sines

엔돌핀! 2012. 4. 10. 00:07

Product of sines

Let $X$ be the set of all positive real number $c$ such that $$\frac{\prod_{k=1}^{n-1}{\sin\frac{k\pi}{2n}}}{c^n}$$ converges as $n$ goes to infinity. Find the infimum of $X$.


Proof. Since $\sin\frac{\pi}{2}=1$,  we can say $\frac{\prod_{k=1}^{n-1}{\sin\frac{k\pi}{2n}}}{c^n}=\frac{\prod_{k=1}^{n}{\sin\frac{k\pi}{2n}}}{c^n}$

Define $B_n =\frac{\prod_{k=1}^{n-1}{\sin\frac{k\pi}{2n}}}{c^n}$. And taking logarithm to the sequence, then we define

$C_n = \log\biggl[\frac{\prod_{k=1}^{n-1}{\sin\frac{k\pi}{2n}}}{c^n}\biggr] = \sum_{k=1}^n \log(\sin\frac{k\pi}{2n})-n\log c =\biggl[\sum_{k=1}^n \log(\sin\frac{k\pi}{2n}) \frac{1}{n} -\log c\biggr]n$.

By definition of Riemann sum, $\lim_{n\to \infty} \sum_{k=1}^n \log (\sin\frac{k\pi}{2n})\frac{1}{n} = \int_0^1 \log(\sin\frac{k\pi}{2n})dx =\log (\frac{1}{2})$.

So, $\lim_{n\to \infty} \biggl[\sum_{k=1}^n \log(\sin \frac{k\pi}{2n})\frac{1}{n}-\log c \biggr] = \log \frac{1}{2c}$.

Since $\lim_{n\to \infty} n = \infty$,

if $c > \frac{1}{2}$, then $\log \frac{1}{2c} <0$ and  $\lim_{n\to \infty} C_n = -\infty$.

That is,  $\lim_{n\to \infty} B_n=\lim_{n\to \infty} e^{C_n} = 0$.

if $c < \frac{1}{2}$, then $\log \frac{1}{2c} >0$ and  $\lim_{n\to \infty} C_n = \infty$.

That is,  $\lim_{n\to \infty} B_n = \lim_{n\to \infty} e^{C_n} = \infty$.


Therefore, the infimum of $X$ is $\frac{1}{2}$





'Study > KAIST POW' 카테고리의 다른 글

KAIST POW 2012-12 : Big partial sum  (0) 2012.05.05
KAIST POW 2012-11 : Dividing a circle  (0) 2012.04.30
KAIST POW 2012-10 : Platonic solids  (0) 2012.04.24
KAIST POW 2012-9 : Rank of a matrix  (0) 2012.04.15
KAIST POW 2012-8 : Non-fixed points  (0) 2012.04.08